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178 -hydroxysteroid dehydrogenases (178-HSD) catalyze the conversion of estrogens and androgens
at the C17 position. The 178-HSD type I, II, III and IV share less than 25%, amino acid similarity.
The human and porcine 178-HSD IV reveal a three-domain structure unknown among other
dehydrogenases. The N-terminal domains resemble the short chain alcohol dehydrogenase family
while the central parts are related to the C-terminal parts of enzymes involved in peroxisomal
B-oxidation of fatty acids and the C-terminal domains are similar to sterol carrier protein 2. We
describe the cloning of the mouse 17-HSD IV ¢cDNA and the expression of its mRNA. A probe
derived from the human 17g-HSD IV was used to isolate a 2.5 kb mouse cDNA encoding for a protein
of 735 amino acids showing 85 and 819, similarity with human and porcine 17§-HSD IV, respectively.
The calculated molecular mass of the mouse enzyme amounts to 79,524 Da. The mRNA for 17§-HSD
IV is a single species of about 3 kb, present in a multitude of tissues and expressed at high levels in
liver and kidney, and at low levels in brain and spleen. The cloning and molecular characterization
of murine, human and porcine 178-HSD IV adds to the complexity of steroid synthesis and
metabolism. The multitude of enzymes acting at C17 might be necessary for a precise control of
hormone levels.
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INTRODUCTION for proteins of 737 and 736 aa with a calculated molecu-
lar mass of about 80kDa. The enzyme catalyzes
NAD ~-dependent oxidation of 17f-estradiol and A5-
androstene-3f,17f8-diol. The respective reverse reac-
tions are about 400-fold less effective [10-12]. After
amino-terminal cleavage of the 80 kDa protein a 32 kDa
estradiol dehydrogenase is released. It is similar to
members of the short chain alcohol dehydrogenase
family [12-14]. The amino acid sequence of 17f-HSD
IV is markedly different from that of the previously
cloned 17f-hydroxysteroid dehydrogenases since it is
less than 25%, identical with 178-HSD I, II and III.

The control of growth, differentiation and function of
cells by estrogens and androgens is modulated by
178 -hydroxysteroid dehydrogenases (178-HSD)[1, 2].
Besides the purified and cloned soluble, placental 17f-
HSD 1 consisting of 327 amino acids (aa) a further
placental microsomal enzyme 178-HSD II of 387 aa
was cloned [3-8]. The 17-HSD I is an oxidoreductase
with equal affinities for estradiol and estrone [6, 7],
whereas 178-HSD 11 slightly prefers oxidation of both
estrogens and androgens over reduction [8]. 178-HSD
IIT of 310aa reducing androgens and estrogens is

expressed exclusively in the human testis [9].
Recently, we have purified and cloned a fourth

174-HSD (178-HSD IV) in the porcine [10, 11] and

the human species [12]. Their respective cDNAs code
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The first 300 amino-terminal aa of human and porcine
178-HSD IV are similar to several members of the
short chain alcohol dehydrogenase family, such as the
N-terminal domains of FOX2 protein from Saccar-
omyces cerevisiae (549, identity) and the multifunc-
tional enzyme of Candida tropicalis (50%, identity) [12,
13, 15, 16]. The region corresponding to aa 343—607 of
the human 178-HSD IV shares high similarity with
the trifunctional C-terminal part of C. tropicalis
enzyme and the FOX2 protein [12,13,15,16]. The
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carboxy-terminal part of the 17-HSD IV (aa 595-736)
is 399, identical to the human sterol carrier protein 2
(SCP2) which has been reported to participate in the
intracellular transport of cholesterol and lipids [12,
13,17].

A better understanding of the regulation and func-
tion of the type IV dehydrogenases would be facilitated
by identifying the enzyme in a well-defined animal
model such as the mouse. The present work describes
the cloning and mRNA expression of the mouse 17f-
HSD IV of 735 aa with a predicted molecular mass of
79,524 Da.

MATERIALS AND METHODS

Isolation, subcloning and sequencing of mouse 178-HSD
IV ¢DNA clones

Molecular cloning of the mouse 178-HSD IV cDNA
was performed with a probe of 2.6 kb corresponding to
the partially EcoRI digested full-length Li-1781V frag-
ment stretching from nucleotide — 14 to nucleotide
2548 of human 178-HSD IV ¢DNA and with a probe
of 352bp corresponding to the EcoRI digested P1-
1781V fragment stretching from nucleotide — 48 to 303
of human 178-HSD IV ¢DNA [12]. Approximately 10°
recombinant phages from an oligo(dT)- + random-
primed mouse adult kidney and a random-primed
mouse adult skeletal muscle 4gtll cDNA expression
libraries were screened with 1 x 10° cpm/m1*’P-labeled
probe. The filters were washed in 0.5 x SSC-0.19,
SDS at 60°C for 30 min and then autoradiographed
12h at —80°C. After two purification steps, phages
were isolated as described [12] and the inserts were
excised by EcoRI digestion. The purified cDNA in-
serts were subcloned into the polylinker site of pBlue-
script SK vector (Stratagene, La Jolla, CA). Synthetic
oligonucleotides, as well as T7 or T3 vector primers,
and modified T7 DNA polymerase were used to se-
quence both strands of double-stranded plasmid DNA
with the dideoxy chain termination method with
[*S]JATP (USB, Cleveland, OH). Sequences were
confirmed using an Applied Biosystems 370A auto-
matic system with fluorescent dve-labeled cDNA
sequence-specific primers and a Taq dye-primer se-
quencing kit (Applied Biosystem, Foster City, CA).

RNA analysis

A commercial mouse poly(A*) RNA blot was ob-
tained from Clontech (Palo Alto, CA). The membrane
was prehybridized in a solution containing 250 ug/ml
of denatured salmon sperm DNA, 509, formamide,
5 x Denhardt’s, 0.1°; SDS, 5 x SSC and 50 mM
Na,HPO,, for 2h at 42°C, and hybridization was
carried out in the same solution containing 5%, dextran
sulfate and the **P-labeled probe for 16 h at 42°C. The
[x-**P] EcoRI fragment corresponding to nucleotides
302-1753 of mouse 17-HSD IV was used as probe.
The membrane was washed sequentially in 2 x SSC
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containing 0.1% SDS at 55°C for 1h, in
0.5 x SSC-0.1%, SDS at 60°C for 30min and in
0.1 x SSC-0.19%, SDS at 65°C for 30 min. Thereafter,
the membrane was exposed to X-ray films with an
intensifying screen at —80°C for 2 days. Relative
178-HSD 1V signals were quantified using a phospho-
imager (Molecular Dynamics).

Western blotting

Kidney cortex was homogenized and a particulate
fraction (sedimenting between 2000 g,, and 240,000 g,
for 2h) prepared as described [10]. Proteins were
separated by SDS-PAGE (109, gel with 20 ug of
protein per lane), followed by a transfer to nitrocellu-
lose membranes and incubation with mouse mono-
clonal antibody F1-peroxidase. The mab F1 recognizes
80 and 32kDa forms of the porcine 17f8-hydroxy-
steroid dehydrogenase [10].

Immunocytochemistry

Mouse tissues were fixed and processed for paraffin
embedding as described [18]. Rehydrated 3 um sec-
tions were incubated with a F1 antibody conjugated
with peroxidase and the color developed with
diaminobenzidine/H,0, [18].

RESULTS
Isolation of mouse 178-HSD type IV ¢cDNA

A fragment of human 17§-HSD cDNA [12] corre-
sponding to nucleotides — 14 to 2548 was chosen for
screening mouse cDNA libraries. Using the *?P-labeled
probe, five cDNAs were isolated from adult mouse
kidney using 10°4igtll recombinants. The cDNAs
were purified and size-characterized. After EcoRI di-
gestion, one clone (mK1781IV) containing two frag-
ments of 0.7 and 1.6 kb was obtained. The fragments
were subcloned into pBluescript SK vectors, amplified
and the respective 5’ and 3’ regions sequenced. Se-
quencing revealed that the 1.6 kb fragment contained
the stop codon similar to porcine and human 17§-HSD
IV [11, 12]. However, the 5’ -upstream sequence of the
0.7 kb fragment stopped at a position corresponding to
nucleotide 191 of human 17-HSD IV cDNA [12].
Using the probe of 352 bp corresponding to the EcoRI
digested P1-1781V fragment stretching from nucleo-
tide —48 to 303 of human 175-HSD IV cDNA [12],
one clone (mSM1781V) was isolated from an adult
mouse skeletal muscle Agtll library. The correspond-
ing subcloned EcoRI fragment contained the first in-
frame ATG codon similar to human and porcine
17p-HSD IV and contained 14 nucleotides upstream
from the ATG (Fig. 1). The 3’-untranslated region of
mK178IV clone is 248bp long. One classical
polyadenylation consensus AATAAA site [19] was
detected 225 nucleotides downstream from the stop
codon. However, Northern blot analysis indicates that
this clone is truncated in its S’- or 3’-untranslated
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Fig. 1. Nucleotide and predicted amino acid sequences of mouse 17p-HSD IV. Nucleotide and amino acid
numbering are given at the right. The nucleotides corresponding to the open reading frame and the 5’- and
3’ untranslated regions are in capital and small letters, respectively. The putative polyadenylation consensus
site is underlined.
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region and that the corresponding full-length cDNA is
about 3.0 kb.

Deduced amino acid sequence and similarity with other
178-HSDs

The sequence of the first in-frame initiating codon of
mouse 178-HSD 1V, GCTCATGG (Fig. 1), contains
incomplete consensus sequence required for optimal
initiation by eukaryotic ribosomes [20], similar to
porcine and human 178-HSD IV [11,12]. The 13

nucleotides upstream from this first ATG are not
conserved when compared to the 5'~-noncoding region
of porcine and human 178-HSD IV. Thirteen in-frame
ATG codons are found in the sequence. The second
in-frame ATG downstream from the first is not fol-
lowed by a G at position +4, which is essential for
efficient translation [20]. The open reading frame
(OREF) starting at the first ATG encodes for a protein
of 735aa of 85 and 819, similarity with human
and porcine 178-HSD 1V, respectively (Fig. 2). The

Mouse | MASPLRFDGRVVLVTGPGGGLGRAYALAFAERGALVIVNDLGGDFKGIGKGSSAADKVVAEIRRKGGKAVANYDSVEAGE | 80
Human | MGSPLRFDGRVVLVTGAGAGLGRAYALAFAERGALVVVNDLGGDFKGVGKGSLAADKVVEEIRRRGGKAVANYDSVEEGE | 80
Porcine| MASMLNFYGRVVLVTGAGGGLGRTYALAFAERGASVVVNDLGGDMKGVGKGSLAADKVVEETRRKGGKAVANYDSVEAGE | 80
Cons M S L F GRVWLVIG G GLGR YALAFAERGA V VNDLGGD KG GKGS AADKVV EIRR GGKAVANYDSVE GE
Mouse | KLVKTALDTFGRIDVVVNNAGILRDRSFSRISDEDWDIIHRVHLRGSFQVTRAAWDHMKKQNYGRILMTSSASGIYGNFG | 160
Human | KVVKTALDAFGRIDVVVNNAGILRDRSFARISDEDWDIIHRVHLRGSFQUTRAAWEHMKKQKYGRIIMTSSASGIYGNFG | 160 SCAD
Porcine| KIVKAALDAFGRIDVVVNNAGILRDRSFSRISDEDWDMIQRVHLRGSFMVTRAAWDHMKKQNFGRI IMTSSAAGIYGNFG | 160 Box
Cons K VK ALD FGRIDVVVNNAGILRDRSF RISDEDWD I RVHLRGSF VTRAAW HMKKQ GRI MTSSA GIYGNFG
Mouse | QANYSAAKLGILGLCNTLAIEGRKNNIHCNTIAPNAGSRMTETVLPEDLVEALKPEYVAPLVLWLCHESCEENGGLFEVG | 240
Human | QANYSAAKLGLLGLANSLAIEGRKSNIHCNTIAPNAGSRMTQTVMPEDLVEALKPEYVAPLVLWLCHESCEENGGLFEVG | 240
Porcine|{ QANYSAAKLGLLGLSNSLAVEGKKNNIHCNTVAPVAGSRMTQGFLPEDLIEALKPEYVAPLVLWLCHESCEENGSVFEVG | 240
Cons QANYSAAKLG LGL N LA EG K NIHCNT AP AGSRMT  PEDL EALKPEYVAPLVLWLCHESCEENG FEVG
Mouse | AGWIGKLRWERTLGATVRKRNQPMTPEAVRDNWEKICDFSNASKPQTIQESTGG -SEG~ISPNRTSHAAPA 318
Human | AGWIGKLRWERTLGAIVRQKNHPMTPEAVKANWKKICDFENASKPQSIQESTGSIIEVLSHID-SEGGVSANHTSRATST 319
Porcine| AGWIGKLRWERTLGALVRQKNQPMTPEAVKANWIKICDFDNATKPQRIQDSVSTVIEALSKIDSSDGGISANNLSHATSA 320
Cons AGWIGKLRWERTLGA VR N PMTPEAV NW KICDF NA KPQ IQ S ELKNDSG SN SAa
Mouse  ATSGFVGAVGHKLPSFSSS IMYALGVGASVKNPKDLKFVYEGSADFSCLPTFGVIVAQKSMMNGGLAEVPGLSF | 398
Human  ATSGFAGAIGQKLPPFSYA IMYALGVGASTKDPKDLKF IYEGSSDFSCLPTFGVI IGQKSMMGGGLAEIPGLSI | 399
Porcine APSGLVEAVGYKFPPFSS IMYAFGVGASTKEPKDLKFIYEGNSDFSCLPTFGVILAQKSLGGGGLAEIPGLSV | 400
Cons ASGVAGEKPFS YIE | IMYA GUGAS K PKDLKF YEG DFSCLPTFGVI QKS GGLAE PGLS
Mouse | NFAKALHGEQYLELYKPLLRSGELKCEAVIADILDKGSGVVIVMDVYSYSGKELICYNQFSVFVVGSGGFGGKRTSEKLK | 478
Human | NFAKVLHGEQYLELYKPLPRAGKLKCEAVVADVLDKGSGVVI IMDVYSYSEKEL ICHNQFSLFLVGSGGFGGKRTSDKVK | 479 HDE
Porcine | NFTKVLHGEHYLELYKPLPNAGDLKCEAVVADVLDKRSGLVILIDVYSYSGKEL ICYNQF SVFVMGSGGFGGKRTSDKDK | 480
Cons NF K LHGE YLELYKPL G LKCEAV AD LDK SG VI DVYSYS KELIC NQFS F GSGGFGGKRTS K K Box
Mouse | AAVAVPNRPPDAVLRDATSLNQAALYRI.SGDWNPLHIDPDFASVAGFEKPILHGLCTFGFSARHVLQQOFADNDVSRFKAL | 558
Human | VAVAIPNRPPDAVLTDTTSLNQAALYRLSGDWNPLHIDPNFASLAGFDKPILHGLCTFGFSARRVLQQFADNDVSRFKAT | 559
Porcine | VAVAIPNRPPDAILTDTTSLNQAALYRLSGDWNPLHIDPDFASLAGFDRPILHGLCTFGFSARHVLQQYADRDVLRFRAL | 560
Cons AVA PNRPPDA L D TSLNQAALYRLSGDWNPLHIDP FAS AGF PILHGLCTFGFSAR VLQQ AD DV RFKAI
|
Mouse | KVRFAKPVYPGQTLQTEMWKEGNRIHFQTKVHETGHVVISNAYVDL STQTPSEGGELQSALVFGEIGRRLKSVG | 638
Human | KARFAKPVYPGQTLOTEMWKEGNRIHFQTKVQETGIIVISNAYVDLAHISGTSAKTPSEGGKLOSTFVFEEIGRRLKDIG | 639
Porcine | KVRFAKPVYPGOTLOTEMWKEGNR THFQTKVQETGITVI SNAYVDLVHISDTLAKT PSEGGDLQSNLVFEEIGRRLODIG | 640
Cons K RFAKPVYPGQTLQTEMWKEGNRIHFQTKV VISNAYVDL H s PSEGG LQS VF EIGRRL G SCP2
Box
Mouse | REVVKKANAVFEWHITKGGTVAAKWIIDLKSGSGEVYOGPAKGSADVTIIISDEDFMEVVFGKLDPQKAFFSGRLKARGN | 718
Human | PEVVKKVNAVFEWHITKGGNIGAKWTIDLKSGSGKVYQOGPAKGAADTTIILSDEDFMEVVLGKLDPQKAFFSGRLKARGN | 719
Porcine | QEMVRKVNAVFEWHITKGEKIAAKWTIDLKNGAGKVYQGPAKGSADATFILSDEVFMEVVLGKLDPQKAFFSGRLKARGN | 720
Cons E VKK NAVFEWHITKG  AKWTIDLK G G VYQGPAKG AD T ILSDE FMEVV GKLDPQKAFFSGRLKARGN
Mouse | IMLSQKLOMILKDYAKL 735
Human | IMLSQKLQMILKDYAKL 736
Porcine | IMLSQKLOMILKDYAKI 737
Cons IMLSQKLQMILKDYAK

Fig. 2. Alignment of mouse, human and porcine 178-HSD IV protein sequences. The amino acid (aa) sequences
of mouse, human and porcine 178-HSD IV were aligned by computerized alignment software using the
CLUSTAL package [25]. The residues are numbered relative to the first putative amino terminus methionine.
Conserved aa identical for all three members are shown at the Cons line. Three regions of similarity have been
previously described {12, 13] and are delineated in the SCAD, HDE and SCP2 boxes which corresponds to the
first 300 aa similar to short chain alcohol dehydrogenase (SCAD), aa 342-606 similar to the C-terminal part
of hydratase-dehydrogenase epimerase (HDE) and aa 595-735 to sterol carrier protein 2 (SCP2), respectively.
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calculated molecular mass of the product is 79,524 Da.
The translation of the ORF predicts a protein with 9
cysteines, rich in glycine (10.5%,), alanine (9.39%,),
valine (8.8%), leucine (8.3%) and serine (7.5%,)
residues. An alignment of the amino acid sequences of
the 178-HSD IV cloned in the mouse (this report),
human [12] and porcine [11] reveals that all regions are
conserved. The lowest similarity (46%,) is seen from aa
291 to 337 (Fig. 2). The first 300 aa are similar to
members of the short chain alcohol dehydrogenase
family (SCAD box). The central region corresponding
to aa 343-607 of the human 178-HSD IV shares high
similarity with the C-terminal part of the trifunctional
hydratase-dehydrogenase-epimerase (HDE box) [16]
and the carboxy-terminal part reveals 399, identity to
the human sterol carrier protein 2 (SCP2 box)
[12,13,17].

Northern blot analysis of 178-HSD IV in mouse tissues

Expression levels of the mouse 178-HSD IV were
analyzed by Northern blotting. Poly(A*) mRNA
(2 pg/lane) from different mouse tissues were hy-
bridized with the [a-**P] EcoRI fragment correspond-
ing to nucleotides 302-1753 of mouse 178-HSD IV.
Using stringent conditions, an approx. 3.0 kb mRNA
transcript was found to be expressed in virtually all

kb 1 2 3|45 6}|7]|8

9.5 —
7.5 —

4.4 —

2.4 —

1.36 —

Fig. 3. Northern blot analysis of 17B-HSD IV in mouse tissues.
Samples of poly(A*) mRNA (2pg per lane) from different
mouse tissues were applied. The EcoRI digested fragment
from nucleotides 302-1753 of Li-17pIV plasmid was used
as probe. RNA blot analysis was performed as previously
described [12]. The sizes (kb) are indicated on the left. Blot
contains mRNA from mouse heart (lane 1), brain (lane 2),
spleen (lane 3), lung (lane 4), liver (lane 5), skeletal muscle
(lane 6), kidney (lane 7) and testis (lane 8).
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mouse tissues tested (Fig. 3). The apparent highest
expression was seen in liver (Fig. 3, lane 5) followed by
kidney (Fig. 3, lane 7) and skeletal muscle (Fig. 3,
lane 6). Moderate expression occurred in the heart
(Fig. 3, lane 1), testis (Fig. 3, lane 8) and lung (Fig. 3,
lane 4). Faint signals were detected in the brain (Fig. 3,
lane 2) and spleen (Fig. 3, lane 3). Quantification with
a phosphorimager revealed that the 175-HSD IV
message was 50-fold less abundant in the spleen than
in the liver. The message in the kidney is 2-fold less
intense than that in the liver.

Reactivity of monoclonal antibody F 1 with murine tissues

The affinity of mouse monoclonal antibody F1 pre-
pared against porcine 17-HSD IV was demonstrated
on western blots of two murine species (Fig. 4). Typical
80 and 32kDa bands, corresponding to the primary
translation product and its N-terminal enzymatically
active fragment, were seen in western blots of porcine,
rat and mouse kidney particulate fractions.

kDa

- — 116

— 84

— 58

48

36

28

Fig. 4. Reactivity of monoclonal antibody F1. Samples (20 pg)
of particulate fractions of kidney homogenates from pig (lane
1), rat (lane 2) and mouse (lane 3) were subjected to
SDS-PAGE, blotted to nitrocellulose, incubated with mab
F1l-peroxidase and visualized by reaction with diaminoben-
zidine/H,0, [10]. Molecular mass standards are indicated.



Fig. 5. Immunocytochemical survey of 178-HSD IV in mouse tissues. Paraffin sections were incubated with

mab Fl-peroxidase and the color reaction performed as described [18]. Control (B): incubation of liver

sections with peroxidase only. Clear labelling was seen in hepatocytes (A), heart myocytes (C), Purkinje cells

of cerebellum (ML, molecular layer; GL, granular layer) (D), proximal tubules of kidney (E), uterus
epithelium at estrus (F), Leydig cells (G) and granulosa cells (H). Bar 20 pm.
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The mab F1 was used to investigate the presence of
mouse HSD IV in several tissues. High mRNA levels
in liver and heart were paralleled by intense and specific
staining of hepatocytes [Fig. 5(A)] and myocytes of the
heart [Fig. 5(C)]. Epithelial labelling was seen in
luminal and glandular uterine epithelium [Fig. 5(D)]
and in the proximal tubules of the kidney [Fig. 5(E)].
The cerebellum showed exclusive staining of Purkinje
cells [Fig. 5(F)]. Leydig cells of the testes and the
granulosa cells of the ovary and showed clear labelling
[Fig. 5(G) and (H), respectively].

DISCUSSION

The cloning of mouse 17-HSD IV permits an
alignment of the amino acid sequences of three cur-
rently cloned mammalian 175-HSD IV. These pro-
teins feature a multidomain structure. The first 300 aa
of the consensus 178-HSD IV sequence (Fig. 2) show
similarities to the conserved motifs of the short chain
alcohol dehydrogenase family. This domain is followed
by a sequence AAP (aa 315-317) which is the suggested
processing site for a protease cutting the 32 kDa frag-
ment from the primary translation product [13, 21].
The central part resembles the C-terminal part of
enzymes which catalyzes peroxisomal f-oxidation of
fatty acids such as the trifunctional hydratase-dehydro-
genase-epimerase (HDE) [16]. The carboxy-terminus
of the consensus 17-HSD IV sequence is similar to
sterol carrier protein 2 including its peroxisomal target-
ing signal AKL or AKI [22]. The functionality of the
three domains must be examined by a detailed single-
domain expression studies. Recent data indicated that
the porcine 178-HSD IV is localized in vesicles of
120200 nm with moderate clectron-dense matrix
bounded by a single membrane [23]. The identity of
these vesicles with peroxisomes was clarified by im-
munogold electron microscopy [24].

The data on 178-HSD IV mRNA expression and
immunocytochemistry indicate a wide distribution in
different tissues of the mouse. Besides high levels in the
liver and kidney, substantial amounts of 175-HSD IV
mRNA were detected in skeletal muscle, testis, lung
and heart. Low mRNA levels measured in spleen and
brain, as well as in the uterus and intestine (data not
shown) might not reflect the expression of 178-HSD
IV in specialized cells such as uterine epithelium or
Purkinje cells. These levels could be locally much
higher.

Similar observations apply to the widely distributed
human 178-HSD IV [12]. The mouse 178-HSD 1V
mRNA is more predominant in liver than its human
counterpart. The presence of the immunologically re-
lated 80 and 32 kDa proteins in another murine species,
the rat, suggests the existence of additional 178-HSD
IV. This enzyme might be responsible for the oxidative
activity of 17f-hydroxysteroid dehydrogenases ob-
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served in rat tissues [2]. The mouse model allows for
studies of regulation and tissue-specific expression of
the 178-HSD 1IV.
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